MICROBIOME COLONIZATION AND ASSEMBLY

Human Microbiome Science: Vision for the future

Ruth E. Ley

Department of Microbiology
Department of Molecular Biology and Genetics
Cornell Center for Comparative and Population Genomics
Cornell University, Ithaca NY 14853, USA

Cornell University

Life events such as diet changes, antibiotics and fever influence microbiome structure

Case study of 1 individual followed for 2.5 years

Spor, Koren and Ley. Nature Reviews Microbiology 9: 279. (2011) Koenig *et al.*, PNAS, 108: 4578. (2011)

Do early colonizers impact microbiome later in life?

Dominguez-Bello, M. G., M. J. Blaser, R. E. Ley and R. Knight. Development of the infant gut microbiota: insights from high-throughput sequencing. Gastroenterology 140: 1713-1719. (2011)

What does impact microbiome later in life?

What does impact microbiome later in life?

A need for genetic studies in humans:

- QTL mapping studies in mice have revealed associations with loci
 - Loci can be quite big

- Studies with candidate genes in humans
 - e.g., NOD2 (Li et al., PloS One, 2012)
 - You know what you are looking for
- No published genome-wide association studies in humans

Monozygotic versus dizygotic twins

Human Mirror, NYC Subway

The Host Genotype Affects the Bacterial Community in the Human Gastrointestinal Tract

Erwin G. Zoetendal^{1,2}, Antoon D. L. Akkermans¹, Wilma M. Akkermans-van Vliet¹, J. Arjan G. M. de Visser¹ and Willem M. de Vos^{1,2}

From the ¹Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT, Wageningen, ²Wageningen Center for Food Sciences, PO Box 557, 6700 AL, Wageningen, The Netherlands

Microbial Ecology in Health and Disease 13: 129 (2001)

Within MZ = within DZ bacterial diversity

Turnbaugh et al., Nature 457, 480 (2009)

Genotyped MZ and DZ twins

Twin Registry (TwinsUK)

- 2,300 twins genotyped with Illumina 300 HapChip
 3,500 twins genotyped with the Illumina 600 HapChip
- ~1,000 Fecal samples collected to date
 - 249 DZ pairs
 - 157 MZ pairs
 - 163 unrelated
 - 36 repeat samples
 - 32 to 87 (average 64) years old
 - Mostly Female

Collaborators:

Andy Clark (Cornell)
Tim Spector, Jordana Bell
(KCL)

16S rRNA diversity with MiSeq

MZ twins have stronger correlations than DZ twins

MZ = DZ for total diversity

MZ < DZ for specific families of Firmicutes

Goodrich et al., unpublished

Heritable branches within the bacterial tree

Similar pattern of heritability across studies

GWAS

SNP rs1016883 on chromosome 2
In gene for phospholipase C-like 1 (*PLCL1*)

PLCL1 had a role in insulin-induced GABA (A) receptor expression

Goodrich et al., unpublished

Gaps

- How does the host genotype determine the microbiome?
- How does the microbiome interact with the host genotype to determine risk susceptibilities to diseases?
- How much more variation (in any host trait) can be explained with a microbiota component in addition to, or in combination with genotype?

Microbiome in pregnancy

First trimester Third trimester Fat Mass **Blood glucose** Insulin sensitivity

Normal pregnancy

First trimester

Third trimester

T3

91 women from Finland

First trimester Third trimester

T1

T3

Stool samples
Diet data
Clinical Data
Stool from babies

Erika Isolauri Seppo Salminen

Between-individual diversity expands

PC1 (33%)

Which is normal? T1 or T3?

T1 diversity similar to "Normal" from Human Microbiome Project

Koren *et al.* Cell 150: 1 (2012)

What does the pattern associate with?

Gradients of abundances of taxa

Shift in abundant bacterial genera T1

T1: More SCFA producers

T3: More opportunistic pathogens

Each microbiota is depleted in its own way

Between individuals

T3: High

Within individuals

T3: Low

High between-individual diversity persists 1 month post-partum...

....and in the babies

Baby gut microbiotas not more similar to own mother than unrelated mothers BUT similarities greatest for 4yrs- own mother T1 (p=0.003)

Greater inflammation in T3 stool

Elevated levels of inflammatory cytokines in T3 stool

Pregnant microbiome transfer to GF mice

Recipient mice of T3: greater inflammation

Differences in microbiota between T1 and T3 are maintained for 2 weeks

Koren *et al.* Cell 150: 1 (2012)

T3 microbiota induce higher blood glucose levels

Fasting plasma glucose after 2 week period

T3 microbiota make a fatter mouse

Greater adiposity gain in T3 recipients after 2 weeks

Koren *et al.* Cell 150: 1 (2012)

Healthy pregnancy

Metabolic changes include reduced insulin sensitivity, low-grade inflammation

- Highly adaptive in the context of pregnancy
- Are the gut microbes a link in the chain?

Gut microbes impact host metabolism

What is the extent of microbial effect on host phenotype?

What is known:

Some aspects of metabolism, immunity, behavior

What is not known:

Fertility, longevity, activity, physiology, etc...

Selected Collaborators:

USA: Dirk Gevers (Broad Institute)
Andrew Gewirtz, Matam Vijay-Kumar
(Georgia State University), Rob Knight
(CU Boulder, HHMI), Curtis
Huttenhower (Harvard), Lora Hooper
(UT Southwestern, HHMI)

Europe: Tim Spector, Jordana Bell, Michelle Beaumont (King's College London), Fredrik Backhed (Gothenburg University)
Erika Isolauri, Seppo Salminen (Turku University)

Cornell: Andy Clark, Ran Blekhman, Alon Keinan, Qi Sun, Robert Bukowski, Ed Buckler, Jeff Werner, Lars Angenent

THANK YOU:

THE HARTWELL FOUNDATION

BENEFITTING CHILDREN BY INSPIRING INNOVATION AND ACHIEVEMENT

