"Human Microbiome Science: Vision for the Future"
July 24-26, 2013, Bethesda, MD

Gut Microbial Metabolism of Food Constituents: Modulating Human Dietary Exposures

Johanna W. Lampe, PhD, RD Meredith A.J. Hullar, PhD

Division of Public Health Sciences

Fred Hutchinson Cancer Research Center, Seattle WA

Relationship of Diet and the Gut Microbiome to Health and Disease

Outline

- What are the gut microbes doing with our food?
- What is the effect of the gut microbiome on host dietary exposures?
- How might this influence disease risk?

Gaps, needs, and challenges

Gut Microbial Metabolism -Designed to make the most of the situation

- Fermentation
- Reduction
 - -- nitrate, sulfate
- Esterification
- Aromatic fission
- Hydrolysis/deconjugation
 - -- glycosides
 - -- glucuronide conjugates

Distribution of Metabolic Pathways in the Gut Microbiome

Fermentation of Carbohydrates

Microbial Metabolism of Proteins & Amino Acids

Aromatic Amino Acid Metabolism:

Conversion of L-Tryptophan to Indole

- Concentration in human and rodent lumen 0.1 to 4 mM
- Modulates expression of pro- and anti-inflammatory genes
- Strengthens epithelial cell barrier properties
- Decreases pathogen colonization

Sulfur Amino Acid Metabolism: Generation of Hydrogen Sulfide (H₂S)

Produced by gut bacteria:

- Fermentation of sulfur-containing amino acids (methionine, cysteine, cystine, and taurine)
- Action of sulfate-reducing bacteria on inorganic sulfur (sulfate and sulfites)

- Toxic to colonocytes both in vitro and in vivo
- Contributes to inflammation (UC and colon cancer)

Fecal sulfide concentrations increase with increased protein intake in a controlled feeding study

- 5 male volunteers
- Randomized crossover study of 5 protein doses for 10 days each:
- 0 600 g meat /d
- Measured fecal sulfide excretion

Conversion of Choline to Trimethylamine

- Microbial metabolism important in production of TMAO.
- Levels of TMAO and choline and betaine increased after a phosphatidylcholine challenge (2 eggs and [d9]phosphatidylcholine).
- Plasma TMAO suppressed after antibiotics and reappeared after antibiotic withdrawal.

Major Adverse Cardiovascular Events Increase by Quartile of Plasma TMAO

- 4007 adults
 undergoing
 elective
 diagnostic cardiac
 catheterization
- 3-y F/U for major adverse CVD events.
- Increased plasma TMAO associated with increased risk of CVD event.

Dietary Bioactive Phytochemicals

Phenolics

Phenolic acids
Stilbenes
Curcuminoids
Chalcones
Lignans
Elaveneids

Isoflavones

Terpenoids¹

Phenolic terpenes
Carotenoids
Saponins
Phytosterols

Organosulfurs

Thiosulfinates

N-containing compounds

Glucosinolates Indoies

Isothiocyanates from Glucosinolates in Cruciferous Vegetables

Inverse association between urinary ITC excretion and aflatoxin-DNA adducts – Interindividual variation in ITC bioavailability

- N=200, Qidong, China
- Randomized, parallel arm, 2-week trial
- 400 umol glucoraphanin/d vs. placebo
- Urinary ITC recovery 1-45% of dose

Isothiocyanate Recovery in Urine Ranged from 1 to 28% with 200 g Cooked Broccoli

% ITC excreted in urine after 200 g broccoli

Fecal Bacterial Degradation of Glucosinolates In Vitro Differs by ITC-Excreter Status

- Low- and high-ITC excreters identified with standardized broccoli meal
- Fecal bacteria incubated with glucoraphanin for 48 h

Microbial Production of Equol and ODMA

Urinary Equol Excretion with Soy Challenge

Soy Interventions Equol-Producing Capacity Associated with:

- Greater lengthening of menstrual cycle follicular phase.
 Cassidy et al., Am J Clin Nutr 60:333, 1994.
- Lower estrone, estrone-sulfate, testosterone, DHEA,
 DHEA-sulfate, androstenedione, and cortisol, and higher
 SHBG and mid-luteal phase progesterone

Duncan et al., Cancer Epi Biomark Prev 9:581, 2000.

- Improved bone mineral density in post-menopausal women.

 Lydeking-Olsen et al, Eur J Nutr 43: 246, 2004.
- Differential gene expression in peripheral lymphocytes of equal producers and non-producers.

Niculescu et al, J Nutr Biochem 18:380, 2007.

Equol-Producing Capacity and Health: Observational Studies

Positively associated with 2-OH/16 α OHE1 ratios in premenopausal and postmenopausal women.

> Atkinson et al, J Steroid Biochem Mol Biol 86:71, 2003 Frankenfeld et al, J Steroid Biochem Mol Biol 88:399, 2004

- Mammographic density 39% lower in equal producers.
 - Frankenfeld et al, Cancer Epidemiol Biomarkers Prev 13:1156, 2004
- Plasma equol concentrations inversely associated with prostate cancer risk in Japanese men.

Akaza et al., Jpn J Clin Oncol 32:296, 2002

Significant interaction between soy intake and equolproducer status in predicting breast density in postmenopausal women.

Fuhrman et al., Cancer Epidemiol Biomarkers Prev 17:33, 2008

What Human Gut Microbes Produce S-(-)Equol?

Daidzin ► Daidzein ► Dihydrodaidzein ► Equol

Daidzein ► Equol

- Adlercreutzia equolfaciens
- Bacteroides ovatus
- Bifidobacterium
- Eggerthella sp YY7918
- Enterococcus faecium
- Finegoldia magna
- Lactobacillus mucosae
- Lactococcus garvieae
- Ruminococcus productus
- Slackia sp HE 8
- Streptococcus intermedius
- Veillonella sp

Daidzin ► Dihydrodaidzein

Clostridium-like bacterium

Dihydrodaidzein ► Equol

Eggerthella sp Julong 732

Microbial Metabolism of Dietary Components

Summary

- Gut microbial metabolism modifies a variety of dietary components.
- Differences in gut microbial community capacity to handle substrates is detectable as metabolic phenotypes.
- Diet as consumed is not necessarily that experienced by the host.
- The <u>gut microbiome</u> needs to be considered in context of <u>host diet</u> to understand its impact on metabolism and disease risk.

Gaps, Needs and Challenges: More Specific to Nutrition

 Challenge: Testing causality of gut microbiome's contribution to health and disease in humans.

Need:

- Prospective cohorts with repeated measures of exposure (i.e., diet, etc) and samples for gut microbiome characterization.
- Well-controlled dietary interventions to understand inter-individual variation in bacterial metabolic phenotypes in the context of diet.
- Accurate model systems of human dietary metabolism and associated microbiota.

Gaps, Needs and Challenges: Broader Considerations

- To facilitate transdisciplinary research to allow for integrated breadth and depth of knowledge.
- Methods of assessing composite functionality of the gut microbiome and integration of the structure and function of microbial systems.
- Computational methods to integrate highdimensional microbiome and metabolome data.

