

Mass validation of variants identified by whole genome sequencing

Georges Natsoulis, PhD Stanford University

Cancer genome sequencing and personalized diagnostics

Two methods addressing multiple objectives

Objective	Advances
Whole genome sequencing (WGS) discovery	Integration of targeting with WGS
Validation of genome variants from cancer WGS	Accelerating and improving variant validation
Clinical implications from cancer populations	Facilitating analysis large clinical cohorts of archival cancer samples
Clinical translation as diagnostic	Rapid, accurate analysis for prospective clinical review

Method 1: OS-Seq

Step1: synthesize capture probes on flow cell lawn

Step2: Capturing a target region from cancer genomes

Figure legend

OS-Seq for targeting cancer genome regions

Strand-specific capture

Primer probe design

- "Double strand" coverage of target with two primer probes
- Improved mutation discovery based on both strands

OS-Seq: accurate targeting compared to other methods

KRAS oncogene

Nimblegen exomes

OS-Seq

OS-Seq: Targeting loci like extended exons

APC exon 15 (6.5 Kb)

Nimblegen exomes

OS-Seq

Primer probe placement

Primer probe yield

OS-Seq advances and advantages

- Higher sensitivity and specificity mutation detection with "deep" targeted resequencing
- Higher accuracy targeting of any nonrepetitive human genome region
- Accurate variant discovery overlapping primer probe design improves variant detection
- Identification of rearrangement breakpoint sequences
- Efficient workflow of 1 day reduces experimental errors
- Low sample requirements (<1 ug DNA)

Method 2: single strand genomic circularization

Key features:

- -Single-stranded substrate compatible with FFPE material.
- -Capture probes can be placed anywhere.

Pilot demonstration of targeting and accuracy

- 628 genomic regions targeted (~200bp average size)
- 123 Kb of total size of genomic targets
- Samples
 - Matched tissues from the same organ and individual
 - High quality genomic DNA from flash frozen tissue
 - Low quality DNA from matching FFPE tissue.
- Sequencing performed in triplicate

Mutation discovery from clinical archival samples

- Compare capture yields from high quality versus from FFPE genomic DNA
- Determine sensitivity of detection of heterozygote variants in high quality genomic DNA compared to matched archival genomic DNA (FFPE)
- Evaluate FFPE-related DNA damage in variants in FFPE genomic DNA but not in high quality genomic DNA

Capture uniformity of high quality versus FFPE DNA

5% of the regions captured with coverage < 10X

Blue: high quality DNA

Red: FFPE only

Artifacts introduced by FFPE processing

Blue: high quality DNA and FFPE DNA

Red: FFPE only

Percent variant FFPE DNA

Specificity and sensitivity of detection

- Sensitivity: 85% heterozygote detection over 120 Kb target region
 - Related to capture coverage
- Specificity: 1 False positive heterozygote per 10-15kb (
 1 error per 5 genes)
- Specific classes of artifacts observed
 - transitions: $G \rightarrow A$: 7 times and $C \rightarrow T$: 8
 - transversions: C→ A: 4 times and G→T: 5

Single lane mass-validation of whole genome sequencing

Whole Genome sequencing and exome sequencing of matched Normal blood/Primary gastric tumor/Ovarian metastasis

386 coding variants including SNVs, Indels and SVs

Validate all positions in parallel in a single lane of sequencing

From flash frozen tissue

OS-seq capture

GAIIx or HiSeq

From FFPE

Single Strand Circularization

MiSeq

Os-seq

Single strand genomic circularization

Note: targeted amplicons are end-sequenced (150 by 150 bp) on MiSeq

OligoGenome Resource – open access for capture assays

http://oligogenome.stanford.edu

Repeat Masking	% Genome Coverage	Probes
No Mask	~90%	26M
Low Repeat	~75%	20M
No Repeats	~50%	15M

■ No Mask ■ 0.1 Repeat Mask ■ 1.0 Repeat Mask

Application of both methods to analysis of cancer genomes

- OS-seq:
 - Validation of mutations and rearrangements from cancer genomes
 - "Onconome" and exome applications
- Single-strand circularization:
 - Follow-up clinical applications using archival samples (FFPE)

Both methods are scalable \rightarrow single lane validation of cancer genomic projects

Acknowledgements

- Ji Research Group
 - Georges Natsoulis
 - Samuel Myllykangas
 - Jason Buenrostro
 - Erik Hopmans
 - Daniel Newburger
 - Laura Miotke
 - Hua Xu
 - Chris Xu
 - Sue Grimes
- <u>Division of Oncology</u>
 - Lincoln Nadauld
- Stanford Genome Technology Center
 - Michael Jensen

Funding:

- NIH
 - IMAT National Cancer Institute (NCI)
 - National Human Genome Research Institute (NHGRI)
- Doris Duke Foundation
- Howard Hughes Medical Foundation