

Boolean Implications Identify Wilms' Tumor 1 Mutation as a Driver of DNA Hypermethylation in Acute Myeloid Leukemia

Subarna Sinha PhD
Department of Computer Science

Daniel Thomas MD PhD
Department of Medicine, Hematology Division
Stem Cell & Regenerative Medicine Institute

Principal Investigator: David Dill

Principal Investigator: Ravi Majeti

Aberrant Methylation in Acute Myeloid Leukemia

- Acute Myeloid Leukemia (AML) is a disease characterised by the accumulation myeloid precursor cells in the bone marrow that are blocked in their ability to differentiate into mature blood cells
- AML is associated with widespread deregulation of DNA methylation.

Stochastic? Genetic Mutation?

DNMT3a TET2
IDH1 IDH2

Aberrant Methylation

- 1. Identify genetic drivers of aberrant methylation.
- 2. Find leads for a mutation-specific therapy.

Boolean Implications (IF -THEN Rules)

- Four different implications:
 - HIHI: IF A high, THENB high
 - HILO: IF A high, THENB low
 - LOHI: IF A low, THENB high
 - LOLO: if A low, THENB low

Computational Pipeline

WT1 mutation AML is linked to hypermethylation

Mixed RUNX1 4384 399 IDH1 4074 1345 TET2 1314 894 FLT3 614 1350 3683 NPM1 2145 **TP53** 4175 4870

Very few (<500) KIT 281 **KRAS** 23 MT-CO2 15 105 NRAS 182 53 PTPN11 107 8 U2AF1 60 108

Distinct CpG sites and associated genes linked to hypermethylating mutations

CpG sites

Methylated Genes

WT1 mutation induces hypermethylation in AML cells

Mutant WT1 methylation signature is enriched for PRC2 target genes

Patient	samples	with	WT1	mut

i alient samples	with vv i i indt
Gene Sets	P-value
Benporath ES with H3K27ME3	1.6E-87 2.88E-84
Benporath EED targets	1.65E-81
Benporath Suz12 targets	8.13E-63
Benporath PRC2 targets Mikkelsen MEF HCP with	1.58E-51
H3K27ME3 Mikkelsen Brain HCP with	2.64E-41
H3K4ME3 and H3K27ME3 Mikkelsen MCV6 HCP with	2.73E-40
H3K27ME3 Meissner Brain HCP with	9.42E-37
H3K27ME3 Mikkelsen NPC HCP with	1.09E-27
H3K27ME3 Meissner NPC HCP with	8.03E-25
H3K4ME3 and H3K27ME3	3.33 = -3

THP1 cell-line with WT1mut

Gene Sets	P-value
Benporath ES with	9.06E-68
H3K27ME3 Mikkelsen MEF HCP with H3K27ME3	5.12E-56
Benporath EED targets	1.59E-46
Benporath SUZ12 targets	7.31E-46
Benporath PRC2 targets	2.24E-42
Mikkelsen Brain HCP with H3K4ME3 and H3K27ME3	1.84E-40
Mikkelsen NPC HCP with H3K27ME3	4.52E-37
Mikkelsen MCV6 HCP with H3K27ME3	8.61E-36
Meissner NPC HCP with H3K4ME3 and H3K27ME3	1.65E-30
Mikkelsen MEF HCP with H3K27ME3	9.65E-21

WT1 mutant AML shows aberrant repression of Polycomb repressor complex 2 targets

Does WT1 mutation block myeloid differentiation?

Inhibition of PRC2 promotes differentiation in AML with WT1 mutation

Conclusions

- Mutation in WT1 is strongly linked to DNA hypermethylation in AML
- Introduction of mutant WT1 into wildtype cells induced the same pattern of DNA hypermethylation
- The pattern of methylation and gene expression is consistent with a differentiation block caused by WT1mut through dysregulated silencing of PRC2 targets
- Differentiation block in WT1mut AML can be overcome by EZH2 inhibition
- EZH2 inhibitors have activity in WT1mut AML
- Boolean implications are a useful data mining tool for large, heterogeneous cancer data sets

Acknowledgements

Dan Thomas

David Dill

Stanford Centre for Cancer Systems Biology (CCB, NCI)
Progenitor Cell Biology Consortium (PCBC, NHLBI)

Ravindra Majeti

NHMRC CJ Martin Fellowship
Hem/Oncology HSANZ Targetted Therapy Fellowship

Sylvia Plevritis

Andrew Gentles

Andrew Feinberg

Namyoung Jung